LETTERS 2003 Vol. 5, No. 17 ³⁰³⁷-**³⁰³⁹**

ORGANIC

Palladium-Catalyzed Intermolecular r**-Arylation of** *^N***-Protected 2-Piperidinones**

Janine Cossy,* Arnault de Filippis, and Domingo Gomez Pardo

Laboratoire de Chimie Organique associe´ *au CNRS, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France*

janine.cossy@espci.fr

Received June 5, 2003

ABSTRACT

The r**-arylation of the zinc enolate of** *^N***-protected 2-piperidinones with aryl bromides in the presence of a palladium catalyst is described as a general method.**

The addition of nucleophiles to aryl halides can occur by three pathways: addition-elimination (via a Meisenheimer complex), elimination-addition (benzyne), or electron transfer (radical, anion-radical).¹ More recently, palladiumcatalyzed coupling reactions of aryl halides or pseudohalides with nucleophiles have been developed.² It has been shown that the palladium-catalyzed intermolecular coupling of halides and keto enolates or ester enolates is a useful method for synthesizing α -aryl ketones³ and α -aryl esters.⁴ Arylation of other carboxylic acid derivatives such as amides are less common.5 Intermolecular arylation of the lithium enolate of *N*,*N*-dimethylamides with aryl halides in the presence of a palladium catalyst occurs in moderate yields and is not

general.5a Intramolecular arylation of *N-*(2-halophenyl)amides was also reported and led to α -phenylpyrrolidinones.⁵

To our knowledge, only one example of palladiumcatalyzed intermolecular coupling of aryl halides with a cyclic amide, the *N*-methylpyrrolidinone, has been reported.^{5a} Here, we would like to report a general method for the α -arylation of piperidinone enolates (Scheme 1).

^{(1) (}a) Bunnett, J. F.; Zahler, R. E. *Chem. Re*V*.* **¹⁹⁵²**, *⁴⁹*, 273-412. (b) Bunnett, J. F. *Acc. Chem. Res.* **¹⁹⁷²**, *⁵*, 139-147. (c) Paradisi, C. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Semmelhack, M. F. Eds.: Pergamon Press: New York, 1991: Vol. 4, Chapter 2.1 and M. F., Eds.; Pergamon Press: New York, 1991; Vol. 4, Chapter 2.1 and references therein. (d) Norris, R. K. In *Comprehensive Organic Synthesis*; references therein. (d) Norris, R. K. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Semmelhack, M. F., Eds.; Pergamon Press: New York, 1991; Vol. 4, Chapter 2.2 and references therein. (e) Kessar, S. V. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Semmelhack, M. F., Eds.; Pergamon Press: New York, 1991; Vol. 4, Chapter 2.3 and references therein.

^{(2) (}a) Scolastico, C.; Poli, G. *Chemtracts* **¹⁹⁹⁹**, *¹²*, 498-507. (b) Bolm, C.; Hildebrand, J. P.; Muniz, K.; Hermanns, N. *Angew. Chem., Int. Ed.* **²⁰⁰¹**, *⁴⁰*, 3284-3308. (c) Prim, D.; Campagne, J.-M.; Joseph, D.; Andrioletti, B. *Tetrahedron* **²⁰⁰²**, *⁵⁸*, 2041-2075. (d) Littke, A. F.; Fu, G. C. *Angew. Chem., Int. Ed.* **²⁰⁰²**, *⁴¹*, 4176-4211. (e) Culkin, D. A.; Hartwig, J. F. *Acc. Chem. Res.* **²⁰⁰³**, *³⁶*, 234-245.

^{(3) (}a) Palucki, M.; Buchwald, S. L. *J. Am. Chem. Soc.* **1997**, *119*, ¹¹¹⁰⁸-11109. (b) Blake, C. H.; Hartwig, J. F. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 9, 12382-12383. (c) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 1360-1370 and references therein. (d) Sole´, D.; Vallverdu, L.; Bonjoch, J. *Ad*V*. Synth. Catal.* **²⁰⁰¹**, *³⁴³*, 439- 442. (e) Sole´, D.; Vallverdu, L.; Peidro, E.; Bonjoch, J. *Chem. Commun.* **²⁰⁰¹**, 1888-1889. (f) Mutter, R.; Campbell, I. B.; Martin de la Nava, E. M.; Merritt, A. T.; Wills, M. *J. Org. Chem.* **²⁰⁰¹**, *⁵⁶*, 3284-3290. (g) Culkin, D. A.; Hartwig, J. F. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 5816-5817. (h) Ehrentraut, A.; Zapf, A.; Beller, M. *Ad*V*. Synth. Catal.* **²⁰⁰²**, *³⁴⁴*, 209- 217. (i) Hamada, T.; Chieffi, A.; Ahman, J.; Buchwald, S. L. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 1261-1268. (j) Viciu, M. S.; Kelly, R. A., III; Stevens, E. D.; Naud, F.; Studer, M.; Nolan, S. P. *Org. Lett.* **²⁰⁰³**, *⁵*, 1479-1482 and references therein.

^{(4) (}a) Moradi, W. A.; Buchwald, S. L. *J. Am. Chem. Soc.* **2001**, *123*, ⁷⁹⁹⁶-8002. (b) Lee, S.; Beare, N. A.; Hartwig, J. F. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 8410-8411. (c) Jorgensen, M.; Lee, S.; Liu, X.; Wolkowski, J. P.; Hartwig, J. F. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 12557-12565 and references therein.

^{(5) (}a) Shaughnessy, K. H.; Hamann, B. C.; Hartwig, J. F. *J. Org. Chem.* **¹⁹⁹⁸**, *⁶³*, 6546-6553. (b) Freund, R.; Mederski, W. W. K. R. *Hel*V*. Chim. Acta* **²⁰⁰⁰**, *⁸³*, 1247-1255. (c) Honda, T.; Namiki, H.; Satoh, F. *Org. Lett.* **²⁰⁰¹**, *³*, 631-633. (d) Lee, S.; Hartwig, J. F. *J. Org. Chem.* **²⁰⁰¹**, *⁶⁶*, ³⁴⁰²-3415. (e) Zhang, T. Y.; Zhang, H. *Tetrahedron Lett.* **²⁰⁰²**, *⁴³*, 193- 195.

When *N*-tosylpiperidinone **1** (2.3 equiv) was treated, under the conditions used for the α -arylation of esters, ^{4a} with LiHMDS (2.5 equiv) in the presence of bromobenzene (1.0 equiv), $Pd(OAc)_2$ (3.0 mol %), and the bulky electron-rich 2-dicyclohexylphosphino-2′-(*N*,*N*-dimethylamino)biphenyl **L** $(6.3 \text{ mol } %)$, in toluene at room temperature or at 80 °C, no arylation occurred. To increase the reactivity of the enolate, the zinc enolate of **1** was prepared. After treatment of the *N*-tosylpiperidinone **1** (1.0 equiv) with LiHMDS (0.95 equiv), $ZnCl₂$ (1.1 equiv) was added to the lithium enolate. The addition of the zinc enolate to a combination of $Pd(OAc)_2$ (5 mol %), ligand **L** (7.5 mol %), and bromobenzene (1.0 equiv) led to the α -aryl tosylpiperidinone 2 in 48% yield after 8 h at room temperature (Table 1, entry 1).⁶ It is worth

Table 1.

noting that the yield was calculated from bromobenzene. The moderate yield in **2** could result from the abstraction of the C3 proton of the α -arylpiperidinone 2 by the enolate of 1, as the C3 proton in **2** is more acidic than the C3 protons in **1**. 4c However, the yield in **2** was not increased when bromobenzene was treated with 2 equiv of the zinc enolate of **1** (Table 1, entry 2).

It is noteworthy that better yields were obtained with the zinc enolate of **1** than with its lithium enolate (48% versus 22%, Table 1, entries 1 and 3) and that the preparation of the zinc enolate with $ZnCl₂$ is crucial, as the arylated product **2** was not obtained when the zinc enolate was prepared with $ZnBr₂$ (Table 1, entry 4).

The influence of the palladium catalyst was also studied by treating 2 equiv of the zinc enolate of **1** with 1 equiv of bromobenzene in the presence of $Pd(dba)₂$ (5.0 mol %) and **L** (7.5 mol %) in refluxing THF. The yield in **2** was increased to 92% by this method (Scheme 2, eq 1).⁷ This reaction

seems to be sensitive to the steric hindrance of the aromatic ring, as the arylation of **1** with 2-bromotoluene led to **3** in only 41% yield (Scheme 2, eq 2).

Since a benzyl protecting group is more easily removed than a tosyl group, *N*-benzylpiperidinone **4** was used to examine the arylation of its zinc enolate in the presence of Pd(dba)₂ and ligand **L** at 65 °C in THF. The results are reported in Table 2. Under these conditions, the yields of α -arylated *N*-benzylpiperidinones were always superior to 45% except in the case of bromo-2,6-dimethylbenzene, for which the α -arylation of 4 was not observed, probably due to steric hindrance (Table 2, entry 4). It is noteworthy that electron-donating groups in the *ortho* and/or *para* position increase the yield (Table 2, entries 5 and 7) and that the presence of an electron-donating group in the *meta* position decreases the yield (Table 2, entry 6). Under our conditions (LiHMDS, $ZnCl_2$, $Pd(dba)_2$, **L**, THF, 65 °C), the α -arylation

⁽⁶⁾ Yield of the arylation of piperidinones is increased by a stoichiometric amount of zinc salt, which is in contrast with the arylation of lactones in the presence of Ni(COD)₂ and ZnBr₂. See: Spielvogel, D. J.; Buchwald, S. L. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 3500-3501.

⁽⁷⁾ **Reaction Procedure for** R**-Arylation of** *^N***-Protected 2-Piperidinones.** To a stirred solution (or suspension) of the *N*-protected 2-piperidone (1.1 mmol, 2.2 equiv) in THF (2 mL) at -20 °C was added a solution of (1.1 mmol, 2.2 equiv) in THF (2 mL) at -20 °C was added a solution of $LiHMDS$ (1.0 mL, 2.0 equiv) After 20 min at -20 °C, a solution of $ZnCl₂$ LiHMDS (1.0 mL, 2.0 equiv). After 20 min at -20 °C, a solution of ZnCl₂ (0.150 σ -1.1 mmol 2.2 equiv) in THF (1 mL) was added. After another 20 (0.150 g, 1.1 mmol, 2.2 equiv) in THF (1 mL) was added. After another 20 min at -20 °C, the solution of zinc enolate was cannulated into a solution of 2-dicyclohexylphosphino-2′-(*N*,*N*-dimethyl-amino)biphenyl **L** (0.015 g, 37.5 *µ*mol, 7.5 mol %), Pd(dba)2 (0.014 g, 25.0 *µ*mol, 5.0 mol %), and aryl bromide (0.5 mmol, 1.0 equiv) in THF (1 mL). The solution was then heated in an oil bath at 65 °C for 8 h, cooled to room temperature, quenched with aqueous NH₄Cl, and extracted with Et₂O. The organic phase was dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was then purified by chromatography on silica gel using 80/20 or 70/30 cyclohexane/ethyl acetate.

^a % yield with LiHMDS (2.5 equiv), Pd(OAc)2 (3.0 mol %), **L** (6.3 mol %), and ArBr (1.0 equiv) in toluene at 80 $^{\circ}$ C.⁴

of *N*-substituted piperidinones does not depend on the substituent on the nitrogen, and the yields are better than those obtained without $ZnCl₂$ in the presence of $Pd(OAc)₂$ in toluene at 80 $^{\circ}$ C (Table 2).^{4a}

The α -arylation of 2-piperidinones can be explained by a mechanism similar to the one previously proposed for the α -arylation of ketones,^{3a,b} except that the lithium enolate is replaced by a zinc enolate.

Oxidative addition of Pd(0)Ln to the arylbromide provides the Pd(II) organometallic intermediate **A** (Scheme 3). Ligand

substitution of the bromide by the zinc enolate leads to the Pd(II) organometallic intermediate **B** or **C**. Reductive elimination from intermediate **B** or **C** gives the α -arylpiperidinone **D** and regenerates the Pd(0)Ln catalyst. Under our conditions for the α -arylation of piperidinones, a β -hydride elimination pathway, which would produce an α , β -unsaturated piperidinone, was never observed. This observation points out the ability of the ligand **L** to render the palladium complexes L4-coordinate.

In summary, we have developed a general method for the direct α -arylation of *N*-tosyl and *N*-benzylpiperidinones. Efforts to extend this reaction to other *N*-substituted piperidinones and mechanistic studies are currently under investigation and will be reported in due course.

Acknowledgment. We gratefully acknowledge Sanofi Synthelabo for a grant (A. de F.) and financial support.

Supporting Information Available: Experimental procedures and spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0350036